Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 273
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38597829

RESUMO

Hypothalamic proopiomelanocortin neurons are sensors of signals that reflect the energy stores in the body. Inducing mild stress in proopiomelanocortin neurons protect them from the damage promoted by the consumption of a high-fat diet, mitigating the development of obesity; however, the cellular mechanisms behind these effects are unknown. Here, we induced mild stress in a proopiomelanocortin neuron cell line by inhibiting Crif1. In proopiomelanocortin neurons exposed to high levels of palmitate, the partial inhibition of Crif1 reverted the defects in mitochondrial respiration and ATP production; this was accompanied by improved mitochondrial fusion/fission cycling. Furthermore, the partial inhibition of Crif1 resulted in increased reactive oxygen species production, increased fatty acid oxidation, and reduced dependency on glucose for mitochondrial respiration. These changes were dependent on the activity of CPT-1. Thus, we identified a CPT-1-dependent metabolic shift towards greater utilization of fatty acids as substrates for respiration as the mechanism behind the protective effect of mild stress against palmitate-induced damage of proopiomelanocortin neurons.

2.
Heliyon ; 10(6): e27206, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38515724

RESUMO

Background and aims: Cardiomyocyte hypertrophy and interstitial fibrosis are key components of myocardial remodeling in Heart Failure (HF) with preserved (HFpEF) or reduced ejection fraction (HFrEF). MicroRNAs (miRNAs) are non-coding, evolutionarily conserved RNA molecules that may offer novel insights into myocardial remodeling. This study aimed to characterize miRNA expression in HFpEF (LVEF ≥ 45%) and HFrEF (LVEF < 45%) and its association with myocardial remodeling. Methods: Prospectively enrolled symptomatic HF patients (HFpEF:n = 36; HFrEF:n = 31) and controls (n = 23) underwent cardiac magnetic resonance imaging with T1-mapping and circulating miRNA expression (OpenArray system). Results: 13 of 188 miRNAs were differentially expressed between HF groups (11 downregulated in HFpEF). Myocardial extracellular volume (ECV) was increased in both HF groups (HFpEF 30 ± 5%; HFrEF 30 ± 3%; controls 26 ± 2%, p < 0.001). miR-128a-3p, linked to cardiac hypertrophy, fibrosis, and dysfunction, correlated positively with ECV in HFpEF (r = 0.60, p = 0.01) and negatively in HFrEF (r = -0.51, p = 0.04). miR-423-5p overexpression, previously associated HF mortality, was inversely associated with LVEF (r = - 0.29, p = 0.04) and intracellular water lifetime (τic) (r = -0.45, p < 0.05) in both HF groups, and with NT-proBNP in HFpEF (r = -0.63, p < 0.01). Conclusions: miRNA expression profiles differed between HF phenotypes. The differential expression and association of miR-128a-3p with ECV may reflect the distinct vascular, interstitial, and cellular etiologies of HF phenotypes.

3.
Nat Metab ; 6(3): 409-432, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38438626

RESUMO

Obesity rates are increasing almost everywhere in the world, although the pace and timing for this increase differ when populations from developed and developing countries are compared. The sharp and more recent increase in obesity rates in many Latin American countries is an example of that and results from regional characteristics that emerge from interactions between multiple factors. Aware of the complexity of enumerating these factors, we highlight eight main determinants (the physical environment, food exposure, economic and political interest, social inequity, limited access to scientific knowledge, culture, contextual behaviour and genetics) and discuss how they impact obesity rates in Latin American countries. We propose that initiatives aimed at understanding obesity and hampering obesity growth in Latin America should involve multidisciplinary, global approaches that consider these determinants to build more effective public policy and strategies, accounting for regional differences and disease complexity at the individual and systemic levels.


Assuntos
Obesidade , Humanos , América Latina/epidemiologia , Obesidade/epidemiologia
4.
Eur J Pharmacol ; 963: 176248, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38056616

RESUMO

Since their discovery in 2000, there has been a continuous expansion of studies investigating the physiology, biochemistry, and pharmacology of endocrine fibroblast growth factors (FGFs). FGF19, FGF21, and FGF23 comprise a subfamily with attributes that distinguish them from typical FGFs, as they can act as hormones and are, therefore, referred to as endocrine FGFs. As they participate in a broad cross-organ endocrine signaling axis, endocrine FGFs are crucial lipidic, glycemic, and energetic metabolism regulators during energy availability fluctuations. They function as powerful metabolic signals in physiological responses induced by metabolic diseases, like type 2 diabetes and obesity. Pharmacologically, FGF19 and FGF21 cause body weight loss and ameliorate glucose homeostasis and energy expenditure in rodents and humans. In contrast, FGF23 expression in mice and humans has been linked with insulin resistance and obesity. Here, we discuss emerging concepts in endocrine FGF signaling in the brain and critically assess their putative role as therapeutic targets for treating metabolic disorders.


Assuntos
Diabetes Mellitus Tipo 2 , Doenças Metabólicas , Humanos , Animais , Camundongos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Fatores de Crescimento de Fibroblastos/metabolismo , Doenças Metabólicas/tratamento farmacológico , Doenças Metabólicas/metabolismo , Homeostase , Encéfalo/metabolismo , Obesidade/tratamento farmacológico
5.
Mol Metab ; 79: 101840, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38036170

RESUMO

OBJECTIVE: Free fatty acid receptor-1 (FFAR1) is a medium- and long-chain fatty acid sensing G protein-coupled receptor that is highly expressed in the hypothalamus. Here, we investigated the central role of FFAR1 on energy balance. METHODS: Central FFAR1 agonism and virogenic knockdown were performed in mice. Energy balance studies, infrared thermographic analysis of brown adipose tissue (BAT) and molecular analysis of the hypothalamus, BAT, white adipose tissue (WAT) and liver were carried out. RESULTS: Pharmacological stimulation of FFAR1, using central administration of its agonist TUG-905 in diet-induced obese mice, decreases body weight and is associated with increased energy expenditure, BAT thermogenesis and browning of subcutaneous WAT (sWAT), as well as reduced AMP-activated protein kinase (AMPK) levels, reduced inflammation, and decreased endoplasmic reticulum (ER) stress in the hypothalamus. As FFAR1 is expressed in distinct hypothalamic neuronal subpopulations, we used an AAV vector expressing a shRNA to specifically knockdown Ffar1 in proopiomelanocortin (POMC) neurons of the arcuate nucleus of the hypothalamus (ARC) of obese mice. Our data showed that knockdown of Ffar1 in POMC neurons promoted hyperphagia and body weight gain. In parallel, these mice developed hepatic insulin resistance and steatosis. CONCLUSIONS: FFAR1 emerges as a new hypothalamic nutrient sensor regulating whole body energy balance. Moreover, pharmacological activation of FFAR1 could provide a therapeutic advance in the management of obesity and its associated metabolic disorders.


Assuntos
Ácidos Graxos não Esterificados , Pró-Opiomelanocortina , Camundongos , Animais , Ácidos Graxos não Esterificados/metabolismo , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo , Camundongos Obesos , Peso Corporal , Hipotálamo/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Metabolismo Energético/fisiologia
6.
Am J Physiol Endocrinol Metab ; 326(2): E134-E147, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38117265

RESUMO

Vertical sleeve gastrectomy (VSG) restores glucose homeostasis in obese mice and humans. In addition, the increased fibroblast growth factor (FGF)15/19 circulating level postsurgery has been implicated in this effect. However, the impact of FGF15/19 on pancreatic islets remains unclear. Using a diet-induced obese mice model, we demonstrate that VSG attenuates insulin hypersecretion in isolated pancreatic islets, likely due to morphological alterations in the endocrine pancreas such as reduction in islet, ß-cell, and α-cell mass. In addition, VSG relieves gene expression of endoplasmic reticulum (ER) stress and inflammation markers in islets from obese mice. Incubation of INS-1E ß-cells with serum from obese mice induced dysfunction and cell death, whereas these conditions were not induced with serum from obese mice submitted to VSG, implicating the involvement of a humoral factor. Indeed, VSG increased FGF15 circulating levels in obese mice, as well as the expression of FGF receptor 1 (Fgfr1) and its coreceptor ß-klotho (Klb), both in pancreatic islets from VSG mice and in INS-1E cells treated with the serum from these mice. Moreover, exposing INS-1E cells to an FGFR inhibitor abolished the effects of VSG serum on insulin secretion and cell death. Also, recombinant FGF19 prevents INS-1E cells from dysfunction and death induced by serum from obese mice. These findings indicate that the amelioration of glucose-insulin homeostasis promoted by VSG is mediated, at least in part, by FGF15/19. Therefore, approaches promoting FGF15/19 release or action may restore pancreatic islet function in obesity.NEW & NOTEWORTHY Vertical sleeve gastrectomy (VSG) decreases insulin secretion, endoplasmic reticulum (ER) stress, and inflammation in pancreatic islets from obese mice. In addition, VSG increased fibroblast growth factor (FGF)15 circulating levels in obese mice, as well as the expression of FGF receptor 1 (Fgfr1) and its coreceptor ß-klotho (Klb), both in pancreatic islets from VSG mice and in INS-1E ß-cells treated with the serum from these mice. Serum from operated mice protects INS-1E cells from dysfunction and apoptosis, which was mediated by FGF15/19.


Assuntos
Células Secretoras de Insulina , Insulina , Camundongos , Humanos , Animais , Insulina/metabolismo , Camundongos Obesos , Células Secretoras de Insulina/metabolismo , Glucose/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Gastrectomia , Inflamação/metabolismo , Homeostase
7.
Nutrients ; 15(24)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38140300

RESUMO

The consumption of large amounts of dietary fats and pregnancy are independent factors that can promote changes in gut permeability and the gut microbiome landscape. However, there is limited evidence regarding the impact of pregnancy on the regulation of such parameters in females fed a high-fat diet. Here, gut permeability and microbiome landscape were evaluated in a mouse model of diet-induced obesity in pregnancy. The results show that pregnancy protected against the harmful effects of the consumption of a high-fat diet as a disruptor of gut permeability; thus, there was a two-fold reduction in FITC-dextran passage to the bloodstream compared to non-pregnant mice fed a high-fat diet (p < 0.01). This was accompanied by an increased expression of gut barrier-related transcripts, particularly in the ileum. In addition, the beneficial effect of pregnancy on female mice fed the high-fat diet was accompanied by a reduced presence of bacteria belonging to the genus Clostridia, and by increased Lactobacillus murinus in the gut (p < 0.05). Thus, this study advances the understanding of how pregnancy can act during a short window of time, protecting against the harmful effects of the consumption of a high-fat diet by promoting an increased expression of transcripts encoding proteins involved in the regulation of gut permeability, particularly in the ileum, and promoting changes in the gut microbiome.


Assuntos
Dieta Hiperlipídica , Obesidade , Gravidez , Camundongos , Feminino , Animais , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/prevenção & controle , Obesidade/metabolismo , Gorduras na Dieta/metabolismo , Camundongos Endogâmicos , Permeabilidade
8.
Eur J Nucl Med Mol Imaging ; 50(8): 2432-2440, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36988710

RESUMO

PURPOSE: The aim of this study was to compare [18F]FDG and [68Ga]Ga-PSMA-11 PET/CT image findings in patients with multiple myeloma (MM). METHODS: Twenty consecutive patients with symptomatic biopsy-proven MM were submitted to whole body [18F]FDG and [68Ga]Ga-PSMA-11 PET/CT with a time interval of 1-8 days between procedures. All lesions were counted and had their maximum SUV (SUVmax) measured. Intra-class correlation (ICC) was used to assess the agreement between [18F]FDG and [68Ga]Ga-PSMA-11 PET/CT findings. RESULTS: A total of 266 lesions were detected in 19/20 patients. [18F]FDG detected 223/266 (84%) lesions in 17 patients and [68Ga]Ga-PSMA-11 190/266 (71%) lesions in 19 patients. Both procedures did not identify any active lesion in 1 patient. Forty-three (16%) lesions were detected only by [68Ga]Ga-PSMA-11 and 76 (29%) only by [18F]FDG. Both tracers identified 147 (55%) lesions. Intralesional mismatch of FDG-PSMA uptake was identified in 25 of these 147 lesions, found in 8 different patients. Different lesions with uptake of only [18F]FDG or [68Ga]Ga-PSMA-11 in the same patient were found in 4 patients. The highest SUVmax of [18F]FDG and [68Ga]Ga-PSMA-11 had a median (min-max) SUVmax of 6.5 (2.0-37.8) and 5.5 (1.7-51.3), respectively. [18F]FDG and [68Ga]Ga-PSMA-11 respectively identified 18 and 19 soft tissue lesions. False-positive [18F]FDG findings had minimal or no uptake of [68Ga]Ga-PSMA-11. Good reliability (ICC ≥ 0.75) was found for number of lesions, number of soft tissue lesions and highest SUVmax in each patient. CONCLUSION: [18F]FDG or [68Ga]Ga-PSMA-11 alone can detect most MM lesions. Almost half of the lesions take up only one of the tracers, reflecting increased glycolysis or angiogenesis in specific lesions, and suggesting their possible complementary role in MM. The marked [68Ga]Ga-PSMA-11 uptake in some cases raises the possibility of a theranostic approach in selected patients.


Assuntos
Radioisótopos de Gálio , Mieloma Múltiplo , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Fluordesoxiglucose F18 , Mieloma Múltiplo/diagnóstico por imagem , Reprodutibilidade dos Testes
9.
Mol Genet Metab ; 138(4): 107552, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36889041

RESUMO

BACKGROUND AND AIMS: Low-density lipoprotein (LDL) plasma concentration decline is a biomarker for acute inflammatory diseases, including coronavirus disease-2019 (COVID-19). Phenotypic changes in LDL during COVID-19 may be equally related to adverse clinical outcomes. METHODS: Individuals hospitalized due to COVID-19 (n = 40) were enrolled. Blood samples were collected on days 0, 2, 4, 6, and 30 (D0, D2, D4, D6, and D30). Oxidized LDL (ox-LDL), and lipoprotein-associated phospholipase A2 (Lp-PLA2) activity were measured. In a consecutive series of cases (n = 13), LDL was isolated by gradient ultracentrifugation from D0 and D6 and was quantified by lipidomic analysis. Association between clinical outcomes and LDL phenotypic changes was investigated. RESULTS: In the first 30 days, 42.5% of participants died due to Covid-19. The serum ox-LDL increased from D0 to D6 (p < 0.005) and decreased at D30. Moreover, individuals who had an ox-LDL increase from D0 to D6 to over the 90th percentile died. The plasma Lp-PLA2 activity also increased progressively from D0 to D30 (p < 0.005), and the change from D0 to D6 in Lp-PLA2 and ox-LDL were positively correlated (r = 0.65, p < 0.0001). An exploratory untargeted lipidomic analysis uncovered 308 individual lipids in isolated LDL particles. Paired-test analysis from D0 and D6 revealed higher concentrations of 32 lipid species during disease progression, mainly represented by lysophosphatidyl choline and phosphatidylinositol. In addition, 69 lipid species were exclusively modulated in the LDL particles from non-survivors as compared to survivors. CONCLUSIONS: Phenotypic changes in LDL particles are associated with disease progression and adverse clinical outcomes in COVID-19 patients and could serve as a potential prognostic biomarker.


Assuntos
1-Alquil-2-acetilglicerofosfocolina Esterase , COVID-19 , Humanos , Lipoproteínas LDL , Biomarcadores , Lisofosfatidilcolinas
10.
PLoS One ; 18(2): e0281373, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36800369

RESUMO

Advances in wound treatment depend on the availability of animal models that reflect key aspects of human wound healing physiology. To this date, the accepted mouse models do not reflect defects in the healing process for chronic wounds that are associated with type two diabetic skin ulcers. The long term, systemic physiologic stress that occurs in middle aged or older Type 2 diabetes patients is difficult to simulate in preclinical animal model. We have strived to incorporate the essential elements of this stress in a manageable mouse model: long term metabolic stress from obesity to include the effects of middle age and thereafter onset of diabetes. At six-weeks age, male C57BL/6 mice were separated into groups fed a chow and High-Fat Diet for 0.5, 3, and 6 months. Treatment groups included long term, obesity stressed mice with induction of diabetes by streptozotocin at 5 months, and further physiologic evaluation at 8 months old. We show that this model results in a severe metabolic phenotype with insulin resistance and glucose intolerance associated with obesity and, more importantly, skin changes. The phenotype of this older age mouse model included a transcriptional signature of gene expression in skin that overlapped that observed with elderly patients who develop diabetic foot ulcers. We believe this unique old age phenotype contrasts with current mice models with induced diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Pé Diabético , Idoso , Pessoa de Meia-Idade , Humanos , Masculino , Camundongos , Animais , Pré-Escolar , Lactente , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Camundongos Endogâmicos C57BL , Pele/metabolismo , Modelos Animais de Doenças , Cicatrização , Obesidade/complicações , Pé Diabético/complicações
11.
Am J Physiol Endocrinol Metab ; 324(3): E226-E240, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36724126

RESUMO

Obesity is one of the leading noncommunicable diseases in the world. Despite intense efforts to develop strategies to prevent and treat obesity, its prevalence continues to rise worldwide. A recent study has shown that the tricarboxylic acid intermediate succinate increases body energy expenditure by promoting brown adipose tissue thermogenesis through the activation of uncoupling protein-1; this has generated interest surrounding its potential usefulness as an approach to treat obesity. It is currently unknown how succinate impacts brown adipose tissue protein expression, and how exogenous succinate impacts body mass reduction promoted by a drug approved to treat human obesity, the glucagon-like-1 receptor agonist, liraglutide. In the first part of this study, we used bottom-up shotgun proteomics to determine the acute impact of exogenous succinate on the brown adipose tissue. We show that succinate rapidly affects the expression of 177 brown adipose tissue proteins, which are mostly associated with mitochondrial structure and function. In the second part of this study, we performed a short-term preclinical pharmacological intervention, treating diet-induced obese mice with a combination of exogenous succinate and liraglutide. We show that the combination was more efficient than liraglutide alone in promoting body mass reduction, food energy efficiency reduction, food intake reduction, and an increase in body temperature. Using serum metabolomics analysis, we showed that succinate, but not liraglutide, promoted a significant increase in the blood levels of several medium and long-chain fatty acids. In conclusion, exogenous succinate promotes rapid changes in brown adipose tissue mitochondrial proteins, and when used in association with liraglutide, increases body mass reduction.NEW & NOTEWORTHY Exogenous succinate induces major changes in brown adipose tissue protein expression affecting particularly mitochondrial respiration and structural proteins. When given exogenously in drinking water, succinate mitigates body mass gain in a rodent model of diet-induced obesity; in addition, when given in association with the glucagon-like peptide-1 receptor agonist, liraglutide, succinate increases body mass reduction promoted by liraglutide alone.


Assuntos
Tecido Adiposo Marrom , Liraglutida , Animais , Camundongos , Tecido Adiposo Marrom/metabolismo , Metabolismo Energético , Liraglutida/farmacologia , Liraglutida/uso terapêutico , Obesidade/metabolismo , Proteoma/metabolismo , Ácido Succínico/farmacologia , Ácido Succínico/metabolismo , Ácido Succínico/uso terapêutico , Termogênese , Proteína Desacopladora 1/metabolismo
12.
Exp Biol Med (Maywood) ; 248(4): 309-316, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36740756

RESUMO

Heme-oxygenase 1 (HO-1) is an enzyme with well-known anti-inflammatory and antioxidant properties, whose levels have been previously associated with disease severity in the context of sterile and infectious diseases. Moreover, the heme/HO-1 pathway has been associated with prothrombotic changes in other diseases. Accordingly, the potential of modulating HO-1 levels for the treatment of COVID-19 was extensively speculated during the COVID-19 pandemic, but very few actual data were generated. The aim of our study was to explore the association of HO-1, heme, and hemopexin (HPX) levels with COVID-19 severity and with markers of inflammation and coagulation activation. The study was conducted in 30 consecutive patients with COVID-19 admitted due to hypoxemia, and 30 healthy volunteers matched by sex, age, and geographic region. HO-1 and HPX levels were measured by enzyme immunoassay (ELISA) and heme levels were measured by a colorimetric method. A comprehensive panel of coagulation and fibrinolysis activation was also used. Patients with COVID-19 presented increased levels of HO-1 when compared to controls (5741 ± 2696 vs 1953 ± 612 pg/mL, respectively, P < 0.0001), as well as a trend toward increased levels of HPX (3.724 ± 0.880 vs 3.254 ± 1.022 mg/mL, respectively; P = 0.06). In addition, HO-1 and HPX levels reduced from admission to day + 4. HO-1 levels were associated with duration of intensive care unit stay and with several markers of coagulation activation. In conclusion, modulation of HO-1 could be associated with the prothrombotic state observed in COVID-19, and HO-1 could also represent a relevant biomarker for COVID-19. New independent studies are warranted to explore and expand these findings.


Assuntos
COVID-19 , Heme , Humanos , Biomarcadores , Hemopexina/metabolismo , Pandemias , Gravidade do Paciente , Heme Oxigenase-1/metabolismo
13.
Am J Physiol Endocrinol Metab ; 324(2): E154-E166, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36598900

RESUMO

Maternal obesity is an important risk factor for obesity, cardiovascular, and metabolic diseases in the offspring. Studies have shown that it leads to hypothalamic inflammation in the progeny, affecting the function of neurons regulating food intake and energy expenditure. In adult mice fed a high-fat diet, one of the hypothalamic abnormalities that contribute to the development of obesity is the damage of the blood-brain barrier (BBB) at the median eminence-arcuate nucleus (ME-ARC) interface; however, how the hypothalamic BBB is affected in the offspring of obese mothers requires further investigation. Here, we used confocal and transmission electron microscopy, transcript expression analysis, glucose tolerance testing, and a cross-fostering intervention to determine the impact of maternal obesity and breastfeeding on BBB integrity at the ME-ARC interface. The offspring of obese mothers were born smaller; conversely, at weaning, they presented larger body mass and glucose intolerance. In addition, maternal obesity-induced structural and functional damage of the offspring's ME-ARC BBB. By a cross-fostering intervention, some of the defects in barrier integrity and metabolism seen during development in an obesogenic diet were recovered. The offspring of obese dams breastfed by lean dams presented a reduction of body mass and glucose intolerance as compared to the offspring continuously exposed to an obesogenic environment during intrauterine and perinatal life; this was accompanied by partial recovery of the anatomical structure of the ME-ARC interface, and by the normalization of transcript expression of genes coding for hypothalamic neurotransmitters involved in energy balance and BBB integrity. Thus, maternal obesity promotes structural and functional damage of the hypothalamic BBB, which is, in part, reverted by lactation by lean mothers.NEW & NOTEWORTHY Maternal dietary habits directly influence offspring health. In this study, we aimed at determining the impact of maternal obesity on BBB integrity. We show that DIO offspring presented a leakier ME-BBB, accompanied by changes in the expression of transcripts encoding for endothelial and tanycytic proteins, as well as of hypothalamic neuropeptides. Breastfeeding in lean dams was sufficient to protect the offspring from ME-BBB disruption, providing a preventive strategy of nutritional intervention during early life.


Assuntos
Intolerância à Glucose , Obesidade Materna , Humanos , Feminino , Animais , Camundongos , Gravidez , Barreira Hematoencefálica/metabolismo , Eminência Mediana/metabolismo , Obesidade Materna/metabolismo , Mães , Intolerância à Glucose/metabolismo , Obesidade/metabolismo , Hipotálamo/metabolismo , Dieta Hiperlipídica/efeitos adversos , Fenômenos Fisiológicos da Nutrição Materna
15.
Biol Res Nurs ; 25(3): 353-366, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36444640

RESUMO

BACKGROUND: Impaired wound healing is a health problem around the world, and the search for a novel product to repair wounded skin is a major topic in the field. GW9508 is a synthetic molecule described as a selective agonist of free fatty acid receptors (FFARs) 1 and 4, and there is evidence of its anti-inflammatory effects on several organs of the body. PURPOSE: Here, we aimed to evaluate the effects of topical GW9508 on wound healing in mice. RESEARCH DESIGN: First, we used bioinformatic methods to determine the expression of FFAR1 and FFAR4 mRNA in the skin from a human cell atlas assembled with single-cell transcriptomes. Next, we employed 6-week-old C57BL6J mice with 2 wounds inflicted in the back. The mice were randomly divided into 2 groups, a control group, which received topical vehicle, and a treatment group, which received GW9508, for 12 days. The wound was monitored by photographic documentation every 2 days, and samples were collected at day 6 and 12 post injury for RT-PCR, western blot and histology analyses. RESULTS: FFAR1 and FFAR4 mRNA are expressed in skin cells in similar amounts to those in other tissues. Topical GW9508 accelerated wound healing and decreased gene expression of IL-10 and metalloproteinase 9 on days 6 and 12 post injury. It increased the quantity of Collagen I and improved the organization of collagen fibres. Conclusions: Our results show that GW9508 could be an attractive drug treatment for wounded skin. Future studies need to be performed to assess the impact of GW9508 in chronic wound models.


Assuntos
Cicatriz , Ácidos Graxos não Esterificados , Camundongos , Humanos , Animais , Metilaminas/farmacologia , Pele , Colágeno
16.
Neurosci Lett ; 792: 136955, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36347339

RESUMO

GPR139 is an orphan G-protein-coupled receptor that is expressed in restricted areas of the nervous system, including the hypothalamus. In this study, we hypothesized that GPR139 could be involved in the regulation of energy balance and metabolism. In the first part of the study, we confirmed that GPR139 is expressed in the hypothalamus and particularly in proopiomelanocortin and agouti-related peptide neurons of the mediobasal hypothalamus. Using a lentivirus with a short-hairpin RNA, we inhibited the expression of GPR139 bilaterally in the mediobasal hypothalamus of mice. The intervention promoted a 40% reduction in the hypothalamic expression of GPR139, which was accompanied by an increase in body mass, a reduction in fasting blood glucose levels, and an increase in insulin levels. In the hypothalamus, inhibition of GPR139 was accompanied by a reduction in the expression of orexin. As previous studies using a pharmacological antagonist of orexin showed a beneficial impact on type 2 diabetes and glucose metabolism, we propose that the inhibition of hypothalamic GPR139 could be acting indirectly through the orexin system to control systemic glucose and insulin. In conclusion, this study advances the characterization of GPR139 in the hypothalamus, demonstrating its involvement in the regulation of body mass, blood insulin, and glycemia.


Assuntos
Diabetes Mellitus Tipo 2 , Insulina , Camundongos , Animais , Orexinas/metabolismo , Insulina/metabolismo , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Hipotálamo/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteínas do Tecido Nervoso/metabolismo
17.
Viruses ; 14(12)2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36560757

RESUMO

Because of the interface between coagulation and the immune response, it is expected that COVID-19-associated coagulopathy occurs via activated protein C signaling. The objective was to explore putative changes in the expression of the protein C signaling network in the liver, peripheral blood mononuclear cells, and nasal epithelium of patients with COVID-19. Single-cell RNA-sequencing data from patients with COVID-19 and healthy subjects were obtained from the COVID-19 Cell Atlas database. A functional protein-protein interaction network was constructed for the protein C gene. Patients with COVID-19 showed downregulation of protein C and components of the downstream protein C signaling cascade. The percentage of hepatocytes expressing protein C was lower. Part of the liver cell clusters expressing protein C presented increased expression of ACE2. In PBMC, there was increased ACE2, inflammatory, and pro-coagulation transcripts. In the nasal epithelium, PROC, ACE2, and PROS1 were expressed by the ciliated cell cluster, revealing co-expression of ACE-2 with transcripts encoding proteins belonging to the coagulation and immune system interface. Finally, there was upregulation of coagulation factor 3 transcript in the liver and PBMC. Protein C could play a mechanistic role in the hypercoagulability syndrome affecting patients with severe COVID-19.


Assuntos
COVID-19 , Trombofilia , Humanos , COVID-19/genética , Leucócitos Mononucleares/metabolismo , SARS-CoV-2/genética , Proteína C/genética , Proteína C/metabolismo , Regulação para Baixo , Transcriptoma , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Peptidil Dipeptidase A/metabolismo , Trombofilia/genética
18.
Front Endocrinol (Lausanne) ; 13: 919588, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35928901

RESUMO

Brown adipose tissue (BAT) is regarded as an interesting potential target for the treatment of obesity, diabetes, and cardiovascular diseases, and the detailed characterization of its structural and functional phenotype could enable an advance in these fields. Most studies evaluating BAT structure and function were performed in temperate climate regions, and we are yet to know how these findings apply to the 40% of the world's population living in tropical areas. Here, we used 18F-fluorodeoxyglucose positron emission tomography - magnetic resonance imaging to evaluate BAT in 45 lean, overweight, and obese volunteers living in a tropical area in Southeast Brazil. We aimed at investigating the associations between BAT activity, volume, metabolic activity, and BAT content of triglycerides with adiposity and cardiovascular risk markers in a sample of adults living in a tropical area and we showed that BAT glucose uptake is not correlated with leanness; instead, BAT triglyceride content is correlated with visceral adiposity and markers of cardiovascular risk. This study expands knowledge regarding the structure and function of BAT in people living in tropical areas. In addition, we provide evidence that BAT triglyceride content could be an interesting marker of cardiovascular risk.


Assuntos
Tecido Adiposo Marrom , Doenças Cardiovasculares , Tecido Adiposo Marrom/diagnóstico por imagem , Tecido Adiposo Marrom/metabolismo , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/metabolismo , Fluordesoxiglucose F18/metabolismo , Fatores de Risco de Doenças Cardíacas , Humanos , Obesidade/metabolismo , Fatores de Risco , Triglicerídeos/metabolismo
19.
Sci Adv ; 8(30): eabm7355, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35905178

RESUMO

Hypothalamic interleukin-6 (IL6) exerts a broad metabolic control. Here, we demonstrated that IL6 activates the ERK1/2 pathway in the ventromedial hypothalamus (VMH), stimulating AMPK/ACC signaling and fatty acid oxidation in mouse skeletal muscle. Bioinformatics analysis revealed that the hypothalamic IL6/ERK1/2 axis is closely associated with fatty acid oxidation- and mitochondrial-related genes in the skeletal muscle of isogenic BXD mouse strains and humans. We showed that the hypothalamic IL6/ERK1/2 pathway requires the α2-adrenergic pathway to modify fatty acid skeletal muscle metabolism. To address the physiological relevance of these findings, we demonstrated that this neuromuscular circuit is required to underpin AMPK/ACC signaling activation and fatty acid oxidation after exercise. Last, the selective down-regulation of IL6 receptor in VMH abolished the effects of exercise to sustain AMPK and ACC phosphorylation and fatty acid oxidation in the muscle after exercise. Together, these data demonstrated that the IL6/ERK axis in VMH controls fatty acid metabolism in the skeletal muscle.


Assuntos
Proteínas Quinases Ativadas por AMP , Interleucina-6 , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Ácidos Graxos/metabolismo , Humanos , Hipotálamo/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Camundongos , Músculo Esquelético/metabolismo , Oxirredução
20.
Viruses ; 14(7)2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35891345

RESUMO

Coronavirus disease 2019 (COVID-19) is caused by the SARS-CoV-2 virus, responsible for an atypical pneumonia that can progress to acute lung injury. MicroRNAs are small non-coding RNAs that control specific genes and pathways. This study evaluated the association between circulating miRNAs and lung injury associated with COVID-19. Methods: We evaluated lung injury by computed tomography at hospital admission and discharge and the serum expression of 754 miRNAs using the TaqMan OpenArray after hospital discharge in 27 patients with COVID-19. In addition, miR-150-3p was validated by qRT-PCR on serum samples collected at admission and after hospital discharge. Results: OpenArray analysis revealed that seven miRNAs were differentially expressed between groups of patients without radiological lung improvement compared to those with lung improvement at hospital discharge, with three miRNAs being upregulated (miR-548c-3p, miR-212-3p, and miR-548a-3p) and four downregulated (miR-191-5p, miR-151a-3p, miR-92a-3p, and miR-150-3p). Bioinformatics analysis revealed that five of these miRNAs had binding sites in the SARS-CoV-2 genome. Validation of miR-150-3p by qRT-PCR confirmed the OpenArray results. Conclusions: The present study shows the potential association between the serum expression of seven miRNAs and lung injury in patients with COVID-19. Furthermore, increased expression of miR-150 was associated with pulmonary improvement at hospital discharge.


Assuntos
COVID-19 , Lesão Pulmonar , MicroRNAs , COVID-19/genética , Biologia Computacional/métodos , Humanos , MicroRNAs/metabolismo , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...